Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation
نویسندگان
چکیده
Valve endothelial cells (VEC) have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol) diacrylate (PEGDA) hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs) 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR) is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM) proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF). VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator) and thrombotic (VWF, tissue factor, and P-selectin) proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In conclusion, utilization of non-integrin adhesive peptide sequences derived from basement membrane ECM may recapitulate balanced VEC function and may benefit endothelialization of valve implants.
منابع مشابه
Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis
Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorp...
متن کاملInhibition of angiogenesis and tumor metastasis by targeting a matrix immobilized cryptic extracellular matrix epitope in laminin.
Angiogenesis and tumor metastasis depend on extracellular matrix (ECM) remodeling and subsequent cellular interactions with these modified proteins. An in-depth understanding of how both endothelial and tumor cells use matrix-immobilized cryptic ECM epitopes to regulate invasive cell behavior may lead to the development of novel strategies for the treatment of human tumors. However, little is k...
متن کاملMultifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices.
Extracellular matrices (ECMs) are complex materials, containing at least dozens of different macromolecules that are assembled together, thus complicating their optimization towards applications in 3D cell culture or tissue engineering. The natural complexity of ECMs has limited cell-matrix investigations predominantly to experiments where only one matrix component is adjusted at a time, making...
متن کاملEpitope in Laminin Targeting a Matrix Immobilized Cryptic Extracellular Matrix Inhibition of Angiogenesis and Tumor Metastasis by Updated Version
Angiogenesis and tumor metastasis depend on extracellular matrix (ECM) remodeling and subsequent cellular interactions with these modified proteins. An in-depth understanding of how both endothelial and tumor cells use matriximmobilized cryptic ECM epitopes to regulate invasive cell behavior may lead to the development of novel strategies for the treatment of human tumors. However, little is kn...
متن کاملMicron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses.
Spontaneous formation of endothelial tubules was restricted to patterned micron-scale regions presenting cell adhesion ligands and angiogenic signaling protein on poly(ethylene glycol) hydrogels. Arginine-glycine-aspartic acid-serine (RGDS), an integrin ligand, and vascular endothelial growth factor (VEGF), a rate-limiting signaling protein involved in angiogenesis, were covalently bound throug...
متن کامل